1. PRZYKŁADY

UWAGA: W poniższych przykładach została przyjęta następująca zasada oznaczania definicji początku i końca pręta konstrukcji: przykładowo zapis (0,0,6) (8,0,6) oznacza, że początek pręta znajduje się w węźle o współrzędnych x = 0.0, y = 0.0 i z = 6.0, natomiast koniec pręta w węźle o współrzędnych x = 8.0, y = 0.0 i z = 6.0. Separatorem (ustawionym w systemie operacyjnym Windows) oddzielającym kolejne współrzędne jest w tym przypadku przecinek ','.

1.1. Przykład projektowania konstrukcji prętowej z wykorzystaniem ekranów systemu ROBOT Millennium

Ten przykład przedstawia definicję, analizę i wymiarowanie prostej, stalowej ramy przestrzennej prezentowanej na poniższym rysunku. Jednostki danych: (m) i (kN).

Każda z ram konstrukcji obciążona zostanie czterema przypadkami obciążenia, z których trzy pokazano na poniższym rysunku.

Podczas definiowania konstrukcji wykorzystywane będą następujące zasady:

- prezentacja dowolnej ikony oznacza naciśnięcie tej ikony lewym klawiszem myszki,
- { x } oznacza wybór opcji 'x' z okna dialogowego,
- LKM i PKM skróty używane do oznaczenia kliknięcia odpowiednio lewym lub prawym klawiszem myszki.

Aby rozpocząć definiowanie konstrukcji, uruchom system **ROBOT Millennium** (naciśnij odpowiednią ikonę lub wybierz komendę z paska zadań). W okienku pojawiającym się po chwili na ekranie (jest

ono opisane w rozdziale 2.1 podręcznika) należy wybrać przedostatnią ikonę w pierwszym wierszu

UWAGA: W przykładzie wykorzystano profile prętów z bazy profili RPLN_PRO (Katalog polskich profili - 2004). Ta baza profili musi być na pierwszym miejscu wśród dostępnych baz profili znajdujących się w oknie dialogowym Preferencje zadania / Katalogi / Katalogi profili.

1.1.1. Definicja modelu konstrukcji

WYKONYWANA OPERACJA	OPIS
Model konstrukcji / Pręty	Z listy dostępnych ekranów systemu ROBOT Millennium należy wybrać ekran PRĘTY
LKM w pole TYP PRĘTA i wybór typu: <i>Słup</i> LKM w pole PRZEKRÓJ i wybór typu HEBS 340	Wybór charakterystyk pręta UWAGA: jeżeli profil HEBS 340 nie jest dostępny na liście, należy nacisnąć klawisz ([…]) znajdujący się na wysokości pola <i>Przekrój</i> i w oknie dialogowym Nowy przekrój dodać ten profil z bazy Rpln_pro do listy aktywnych profili
LKM w pole <i>Początek</i> (tło pola zostanie zmienione na kolor zielony)	Rozpoczęcie definiowania prętów w konstrukcji (słupy konstrukcji)
Wpisać współrzędne: (0,0,0) (0,0,6), Dodaj (8,0,0) (8,0,6) Dodaj	Definicja dwóch słupów ramy
LKM w pole TYP PRĘTA w oknie Pręt i wybór typu: <i>Belka</i> LKM w pole PRZEKRÓJ i wybór typu HEBS 300	Rozpoczęcie definiowania belki i wybór jej charakterystyk UWAGA: jeżeli profil HEBS 300 nie jest dostępny na liście, należy nacisnąć klawisz ([…]) znajdujący się na wysokości pola <i>Przekrój</i> i w oknie dialogowym Nowy przekrój dodać ten profil z bazy RpIn_pro do listy aktywnych profili
LKM w pole <i>Początek (</i> tło pola zostanie zmienione na kolor zielony)	Rozpoczęcie definiowania belki w konstrukcji
(0,0,6) (8,0,6) Dodaj	Definicja belki
LKM w pole do wyboru ekranu systemu <i>ROBOT Millennium</i> Model konstrukcji / Podpory	Wybór ekranu systemu ROBOT Millennium umożliwiającego definiowanie podpór
LKM w pole <i>Aktualna selekcja</i> (na zakładce <i>Węzłowe</i>)	Wybór węzłów konstrukcji, w których zdefiniowane zostaną podpory konstrukcji
Przejść na ekran graficzny; trzymając wciśnięty lewy klawisz myszki zaznaczyć oknem wszystkie dolne węzły słupów	W polu <i>Aktualna selekcja</i> wpisane zostaną wyselekcjonowane węzły: 1 3

 $\overline{\mathbf{N}}$

W oknie dialogowym Podpory wybrać ikonę oznaczającą podporę utwierdzoną (zostanie podświetlona)	Wybór typu podpory
LKM w klawisz Zastosuj	Wybrany typ podpory zostanie nadany w wyselekcjonowanych węzłach konstrukcji; poniższy rysunek prezentuje dotychczas zdefiniowaną konstrukcję
LKM w pole do wyboru ekranu systemu <i>ROBOT Millennium</i> Model konstrukcji / Start	Wybór początkowego ekranu systemu ROBOT Millennium . UWAGA: Jeżeli konstrukcja nie jest widoczna na ekranie, należy nacisnąć ikonę Widok początkowy

CTRL+A	Selekcja wszystkich prętów
Edycja / Edytuj / Lustro pionowe	Odbicie lustrzane wybranych prętów
Graficznie ustaw położenie pionowej osi symetrii w miejscu prawego słupa (x = 8), LKM, Zamknij	Wykonanie symetrii osiowej wybranych prętów i zamknięcie okna Symetria pionowa
LKM w pole do wyboru ekranu systemu <i>ROBOT Millennium</i> Model konstrukcji / Obciążenia	Wybór ekranu systemu ROBOT Millennium umożliwiającego definiowanie obciążeń konstrukcji
LKM w klawisz Nowy znajdujący się w oknie dialogowym Przypadki obciążeń	Definicja przypadku obciążenia o naturze: ciężar własny i standardowej nazwie STA1
LKM w pole <i>Natura</i> <i>Wiatr</i>	Wybór natury przypadku obciążenia: wiatr
LKM w klawisz Nowy LKM w klawisz Nowy	Definicja dwóch przypadków obciążenia o naturze: wiatr i standardowych nazwach: WIATR1 i WIATR2
LKM w pole <i>Natura</i> <i>Eksploatacyjne</i>	Wybór natury przypadku obciążenia: eksploatacyjne
LKM w klawisz Nowy	Definicja przypadku obciążenia o naturze: eksploatacyjne i standardowej nazwie EKSP1
	W pierwszym rzędzie automatycznie został nadany ciężar własny na wszystkich prętach konstrukcji (na kierunku "-Z")
LKM w drugie pole w kolumnie PRZYPADEK, wybór 2. przypadku obciążenia WIATR1	Definicja obciążeń działających dla drugiego przypadku obciążenia

LKM w sąsiednie pole w kolumnie TYP OBCIĄŻENIA, wybór obciążenia siłami węzłowymi	Wybór typu obciążenia
LKM w pole w kolumnie LISTA, wybór graficzny w polu graficznym górnego węzła lewego słupa (nr 2)	Wybór węzłów, do których przykładane będzie obciążenie siłami węzłowymi
LKM w pole w kolumnie "FX=" i wpisanie wartości 100.0	Wybór kierunku i wartości obciążenia siłą
LKM w trzecie pole w kolumnie PRZYPADEK, wybór 3. przypadku obciążenia WIATR2	Definicja obciążeń działających dla trzeciego przypadku obciążenia
LKM w pole kolumnie TYP OBCIĄŻENIA, wybór obciążenia jednorodnego	Wybór typu obciążenia
LKM w pole w kolumnie LISTA, wybór graficzny w polu graficznym skrajnego, prawego słupa (pręt nr 4)	Wybór prętów, do których przykładane będzie obciążenie jednorodne
LKM w pole w kolumnie "px=" i wpisanie wartości -15.0	Wybór kierunku i wartości obciążenia jednorodnego
LKM w czwarte pole w kolumnie PRZYPADEK, wybór 4. przypadku obciążenia EKSP1	Definicja obciążeń działających dla czwartego przypadku obciążenia
LKM w pole kolumnie TYP OBCIĄŻENIA, wybór obciążenia jednorodnego	Wybór typu obciążenia
LKM w pole w kolumnie LISTA, wybór graficzny w polu graficznym obu przęseł belki (pręty nr 3 i 5)	Wybór prętów, do których przykładane będzie obciążenie jednorodne UWAGA: 2 pręty możemy jednocześnie wyselekcjonować oknem lub kolejno wskazując z wciśniętym klawiszem CTRL
LKM w pole w kolumnie "pz=" i wpisanie wartości -20.0	wybór kierunku i wartości obciążenia jednorodnego
LKM w dowolny punkt okna <i>Widok</i>	
CTRL + A	Selekcja wszystkich prętów konstrukcji (wyselekcjonować je można również za pomocą okna)
Mając aktywne pole graficzne z modelem konstrukcji <i>Edycja / Edytuj / Przesuń</i>	Otwarcie okna dialogowego Translacja
LKM w pole (dX, dY, dZ) i wpisanie współrzędnej {0,10,0}	Definicja wektora translacji
LKM w pole Liczba powtórzeń {1}	Definicja liczby powtórzeń wykonywanej operacji przesunięcia

ROBOT Millennium	wersia 20.0 -	Podrecznik uż	vtkownika	(PRZYKŁADY)
	wersja 20.0 -	T OUIĘCZINK UZ	ythowinna	(I N Z I N L A D I)

Wykonaj, Zamknij	Wykonanie translacji konstrukcji i zamknięcie okna dialogowego Translacja
Widok / Rzutowanie / 3d xyz	Wybór widoku aksonometrycznego konstrukcji (patrz rysunek poniżej)
LKM w pole do wyboru ekranu systemu <i>ROBOT Millennium</i> Model konstrukcji / Pręty	Wybór ekranu systemu ROBOT Millennium umożliwiającego definiowanie prętów

LKM w pole TYP PRĘTA i wybór typu: <i>Belka</i> LKM w pole PRZEKRÓJ i wybór typu <i>HEBS 300</i>	Wybór charakterystyk pręta
LKM w pole <i>Początek</i> (tło pola zostanie zmienione na kolor zielony)	Rozpoczęcie definiowania prętów w konstrukcji
(16,0,6) (16,10,6), Dodaj	Definicja belki pomiędzy węzłami 6 i 12 konstrukcji
LKM w pole TYP PRĘTA i wybór typu: <i>Pręt</i> LKM w pole PRZEKRÓJ i wybór typu <i>IPE 220</i>	Wybór charakterystyk pręta UWAGA: jeżeli profil <i>IPE 220</i> nie jest dostępny na liście, należy nacisnąć klawisz ([…]) znajdujący się na wysokości pola <i>Przekrój</i> i w oknie dialogowym <i>Nowy przekrój</i> dodać ten profil z bazy Rpln_pro do listy aktywnych profili
LKM w pole <i>Początek</i> (tło pola zostanie zmienione na kolor zielony)	Rozpoczęcie definiowania stężeń
(16,0,6) (16,10,0), Dodaj (16,10,6) (16,0,0), Dodaj	Definicja stężeń
LKM w pole do wyboru ekranu systemu <i>ROBOT Millennium</i> Model konstrukcji / Start	Wybór początkowego ekranu systemu ROBOT Millennium
LKM w okno z widokiem konstrukcji Selekcja trzech ostatnio zdefiniowanych prętów (belki i stężeń) - przy wciśniętym klawiszu CTRL należy kliknąć lewym klawiszem myszki w trzy prety	

Edycja / Edytuj / Przesuń	Otwarcie okna dialogowego Translacja
LKM w pole (dX, dY, dZ), {-8,0,0}	Definicja wektora translacji
LKM w pole <i>Liczba powtórzeń</i> {2}	Definicja liczby powtórzeń wykonywanej operacji przesunięcia
Wykonaj, Zamknij	Wykonanie translacji prętów i zamknięcie okna dialogowego Translacja

1.1.2. Analiza konstrukcji

	Rozpoczęcie obliczeń dla zdefiniowanej konstrukcji
LKM w pole do wyboru ekranu systemu <i>ROBOT Millennium</i> Rezultaty / Rezultaty	Wybór ekranu REZULTATY systemu ROBOT Millennium . Ekran monitora zostanie podzielony na trzy części: pole graficzne zawierające model konstrukcji, okno dialogowe Wykresy i tabelę prezentującą wartości reakcji.

1.1.3. Analiza wyników

Z górnego paska selekcji 4 : EKSP1 wybór 4: EKSP1	Wybór prezentacji wyników dla czwartego przypadku obciążeniowego
wybór zakładki <i>Deformacja</i> w oknie <i>Wykresy</i> włączenie opcji <i>Deformacja</i>	Wybór prezentacji deformacji konstrukcji dla wybranego przypadku obciążeniowego
LKM w klawisz Zastosuj	Prezentacja deformacji konstrukcji (rysunek poniżej); podobnie można przedstawiać wykresy innych wielkości dostępnych w oknie dialogowym Wykresy

Wyłączenie opcji <i>Deformacja</i> w oknie dialogowym <i>Wykresy</i> , Zastosuj	
LKM w tabeli Reakcje w pole z nazwą kolumny Fz	Kolumna Fz zostaje podświetlona

Format / Wyrównywanie / Do środka Format / Czcionka / Pogrubiona	Edycja prezentacji wyników dla siły Fz
PKM w dowolnym miejscu tabeli reakcji	Wywołanie na ekran menu kontekstowego
Kolumny	Wybór opcji Kolumny, która powoduje otwarcie okna dialogowego do wyboru prezentowanych w tabeli wielkości
LKM w zakładkę <i>Podpory</i> , włączenie opcji <i>Kod podpory</i> , OK	W tabeli pojawia się dodatkowa kolumna zawierająca kody zdefiniowanych dla konstrukcji podpór, przykładowo: bbbbbb oznacza utwierdzenie, bbbwww - przegub

1.1.4. Wymiarowanie stali Norma PN90/B-03200

 $\overline{\nabla}$

LKM w pole do wyboru ekranu systemu <i>ROBOT Millennium</i> Wymiarowanie / Wymiarowanie stali/aluminium	Rozpoczęcie wymiarowanie stalowych prętów konstrukcji. Ekran monitora zostanie podzielony na trzy części: pole graficzne zawierające model konstrukcji, okno dialogowe Definicje i okno dialogowe Obliczenia .
LKM w klawisz Lista w wierszu <i>Weryfikacja prętów</i> w oknie <i>Obliczenia</i>	Otwarcie okna dialogowego Selekcja prętów
W polu znajdującym się nad klawiszem Poprzednia należy wpisać: 1do10, Zamknij	Wybór prętów, które będą weryfikowane
LKM w klawisz Selekcja przypadków obciążeniowych w oknie <i>Obliczenia</i>	Otwarcie okna dialogowego Selekcja przypadków
LKM w klawisz Wszystko, Zamknij	Wybór wszystkich przypadków obciążeniowych
LKM w klawisz Obliczenia	Rozpoczęcie wymiarowania wybranych prętów konstrukcji; na ekranie pojawia się okno Rezultatów skróconych pokazane poniżej

ultaty Komu	unikaty	y]							<u>N</u> otka oblicz. <u>Z</u> amkn
Pręt		Profil	Materiał	Lay	Laz	Wytęż.	Przypadek		Perror
1	ОК	HEBS 340	STAL	41.21	78.79	0.27	2 WATR1		
2	ОК	HEBS 340	STAL	41.21	78.79	0.32	2 WATR1		Wyteżenia
3	ОК	HEBS 300	STAL	61.85	104.01	0.39	4 EKSP1		
4	ОК	HEBS 340	STAL	41.21	78.79	0.27	2 WATR1	T	– Punktu obliczeniowe
5	OK	HEBS 300	STAL	61.85	104.01	0.39	4 EKSP1	T	podział: n = 3
6	OK	HEBS 340	STAL	41.21	78.79	0.27	2 WATR1	∏ -	ekstrema: brak

LKM w wiersz, w którym znajdują się wyniki skrócone dla pręta nr 3	Otwarcie okna Wyniki dla wybranego pręta

strona:	1	0
---------	---	---

LKM	W	zakładkę
uprosz	czony	ch

Prezentacja wyników wymiarowania pręta numer 3; okno Wyników ma postać pokazaną na poniższym rysunku

YNIKI - norma - PN-90/B-03	200 Pręt: 3 Punkt / Współrzędna: 3 / x Przypadek obciążenia: 4 EK	= 1.00 L = 8.00 m SP1	Profil poprawny	_ □ ОК
Vyniki uproszczone Przemieszcz	zenia 🛛 Wyniki szczegółowe 📄			Z <u>m</u> iana
SIŁY N = 17.67 kN Nrc = 2963.89 kN KLASA PRZEKROJU = 1 ZWICHRZENIE	My = -124.17 kN°m Mry = 330.55 kN°m Mryv = 330.55 kN°m By°Mymax = -124.17 kN°m	Mz = 0.03 kN°m Mrz = 116.89 kN°m Mrzv = 116.89 kN°m Bz°Mzmax = 0.03 kN°m	Vy = -0.01 kN Vry = 1355.46 kN Vz = -86.66 kN Vrz = 342.67 kN	<u>Siły</u> Szczegółow
- WYBOCZENIE Y Ly = 8.00 m Lwy = 8.00 m Lambda y = 61.85 - REZULTATY N/(fi*Nrc)+By*Mymax/(fiL*Mry)+	Lambda_y = 0.72 Ncr y = 7646.31 kN fi y = 0.83 Bz*Mzmax/Mrz = 0.39 < 1.00 -	WYBOCZENIE Z Lz = 8.00 m Lwz = 8.00 m Lambda z = 104.01 Delta z = 1.00 (58)	Lambda_z = 1.20 Ncr z = 2703.88 kN fi z = 0.46	N <u>o</u> tka oblicz
Vy∕Vry = 0.00 < 1.00 Vz∕Vrz	= 0.25 < 1.00 (53)			Pomoc

Zamknięcie okien I Wyników - weryfikacji	Wyników i pretów	
ków - weryfikacji	prętów	
		ļ

1.1.5. Wymiarowanie połączeń stalowych Norma: PN-90/B-03200

LKM w pole do wyboru ekranu systemu ROBOT Millennium Wymiarowanie / Połączenia	Rozpoczęcie wymiarowania połączeń stalowych w konstrukcji. Ekran monitora zostanie podzielony na dwie części: okno dialogowe <i>Inspektor obiektów</i> (Połączenia stalowe) i pole graficzne; w dolnej części pola graficznego znajdują się trzy zakładki: <i>Schemat, Widok 3D</i> i <i>Konstrukcja</i> .
Przejść na zakładkę <i>Konstrukcja</i> i mając aktywne (podświetlone) pole graficzne z widokiem konstrukcji wybrać z menu: <i>Widok / Rzutowanie / zx</i>	Wybór prezentacji konstrukcji w rzucie na płaszczyznę zx (współrzędna y jest przyjmowana jako 0)
Selekcja lewego, skrajnego słupa i lewego przęsła belki - przy wciśniętym klawiszu CTRL należy kliknąć lewym klawiszem myszki w wymienione pręty	Wybór prętów, dla których weryfikowane będzie połączenie; wyselekcjonowane pręty wskazano na poniższym rysunku strzałkami

Połączenia / Nowe połączenie dla wybranych prętów	Zdefiniowanie połączenia pomiędzy wybranymi prętami; w oknie dialogowym Definicja połączenia pojawia się kilka zakładek. Można w nich zmieniać poszczególne parametry połączenia.
Wybrać opcję <i>Połączenie spawane</i> znajdującą się w oknie dialogowym Definicja połączenia (zakładka <i>Profile</i>), Zastosuj	Wybór typu definiowanego połączenia stalowego
Połączenia / Obliczenia	Otwarcie okna dialogowego Obliczenia połączeń
LKM w pole <i>Lista</i> znajdujące się w polu <i>Przypadki obciążeniowe</i>	Definicja przypadków obciążeniowych uwzględnianych podczas weryfikacji połączenia
Wpisanie 1do4	Wybór wszystkich przypadków obciążeniowych
LKM w klawisz Obliczenia	Rozpoczęcie weryfikacji połączenia; wyniki skrócone prezentowane są w oknie dialogowym <i>Inspektor obiektów</i> , natomiast szczegółowa notka obliczeniowa jest wyświetlana na zakładce <i>Rezultaty</i> (ta zakładka jest dostępna dopiero po wykonaniu obliczeń połączenia).

1.1.6. Analiza naprężeń

LKM w pole do wyboru ekranu systemu ROBOT Millennium Rezultaty / Analiza naprężeń konstrukcji	Rozpoczęcie analizy naprężeń konstrukcji. Ekran monitora zostanie podzielony na trzy części: ekran graficzny zawierające model konstrukcji, okno dialogowe Naprężenia konstrukcji oraz tabelę rezultatów Naprężenia konstrukcji.
Z górnego paska selekcji wybrać drugi przypadek obciążeniowy 2: WIATR1	Wybór drugiego przypadku obciążeniowego
Na zakładce <i>Wykresy</i> znajdującej się w oknie dialogowym Naprężenia <i>konstrukcji</i> wybrać opcję <i>Max</i> znajdującą się w polu <i>Mises</i> Na zakładce <i>Mapy</i> - <i>Deformacja</i> wybrać opcję <i>Deformacja</i> Zastosuj	Rozpoczęcie obliczeń i prezentacja wartości naprężeń na prętach konstrukcji (w tabeli pojawiają się wartości odpowiednich naprężeń)

Będąc w oknie z widokiem konstrukcji <i>Widok / Rzutowanie / 3d</i> xvz	Wybranie aksonometrycznego widoku konstrukcji
-9-	
Przejść do tabeli <i>Naprężenia</i> konstrukcji <i>Widok / Widok dynamiczny 3D</i>	Ustawienie widoku 3D pozwalającego na prezentację konstrukcji wraz z kształtami profili i szczegółowymi mapami naprężeń na tych przekrojach (zdefiniowaną konstrukcję wraz z wybranymi naprężeniami pokazano na rysunku poniżej)

